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Abstract 

We obtain necessary and sufficient conditions for abelian varieties to acquire semistable re- 
duction over fields of low degree. Our criteria are expressed in terms of torsion points of small 
order defined over unramified extensions. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In this paper we obtain criteria for abelian varieties to acquire semistable reduction 

over fields of certain given (small) degrees. Our criteria are expressed in terms of 

unramified torsion points. 

Suppose that X is an abelian variety defined over a field F, and n is a positive 

integer not divisible by the characteristic of F Let X* denote the dual abelian variety 

of X, let X, denote the kernel of multiplication by n in X(FS), where FS denotes a 

separable closure of F, let X,* denote the kernel of multiplication by IZ in X*(FS), 

and let I(,, denote the Gal(F”/F)-module of nth roots of unity in FS. The Weil pairing 

e, : X, xX,” + p, is a Gal(FS/F)-equivariant non-degenerate pairing. If S is a subgroup 

of X,, let 

2+={yEX,*: e,(x, v) = 1 for every x E S} &X,‘_ 
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For example, if n = m2 and S =X,, then S I>8 = Xi. If X is an elliptic curve and S 

is a cyclic subgroup of order n, then S L = S Suppose that v is a discrete valuation . 
on F whose residue characteristic does not divide n. 

Previously, we showed that if n > 5 then X has semistable reduction at v if and 

only if there exists a subgroup S of X, such that all the points on S and on S’n are 

defined over an extension of F unramified over v (see [15, Theorem 4.51; see also 

[16, Theorem 6.21). In the current paper we show that if there exists a subgroup S 

of X,, for n = 2, 3, or 4 (respectively), such that all the points on S and on Sl- are 

defined over an extension of F unramified over v, then X acquires semistable reduction 

over every degree 4, 3, or 2 (respectively) extension of F totally ramified above v. 

We also give necessary and sufficient conditions for semistable reduction over quartic, 

cubic, and quadratic extensions. Namely, if L is a totally ramified extension of F of 

degree 4, 3, or 2, respectively, then X has semistable reduction over L if and only if 

there exist a finite unramified extension K of F, an abelian variety Y over K which is 

K-isogenous to X, and a subgroup S of Y,,, for n = 2, 3, or 4, respectively, such that 

all the points of S and of SIJz are defined over an umamified extension of K. If X is 

an elliptic curve one may take Y = X. This is not true already for abelian surfaces. 

However, one may take Y = X in the special case where X has purely additive and 

potentially good reduction, with no restriction on the dimension. 

The study of torsion subgroups of abelian varieties with purely additive reduction 

was initiated in [9] and pursued in [lo] (see [4,3] for the case of elliptic curves). See 

p. 312 of [12] and [8] for information on the smallest extension over which an elliptic 

curve with additive and potentially good reduction acquires good reduction. 

We state and prove Theorem 5.2 in the generality n 2 2 (rather than just 2 5 n 5 4) 

since doing so requires no extra work and affords us the opportunity to give a slightly 

different exposition from that in [ 151 for n 2 5, which highlights the method. See 

Section 5 for our major results, see Section 6 for applications and refinements, and see 

Section 7 for examples which demonstrate that our results are sharp. 

2. Notation and definitions 

Define 

R(n) = 1 if n 2 5, R(4) = 2, R(3) = 3, R(2) = 4. 

If X is an abelian variety over a field F, and 8 is a prime not equal to the charac- 

teristic of F. let 

p~,~ : Gal(FS/F) --f Aut(Tc(X)) 

denote the /-adic representation on the Tate module Tt(X) of X. We will write pe 

when there is no ambiguity. Let V/(X) = Te(X) @z, Qt. 

If L is a Galois extension of F and w is an extension of u to L, let $(w/v) denote 

the inertia subgroup at w of Gal(L/F). Throughout this paper we will let d denote 
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Y(r?/v), where I? is a fixed extension of v to Fs, and we will let $ denote the first 

ramification group (i.e., the wild inertia group). We also write Yw for Y(E/w). 

Definition 2.1. Suppose L/F is an extension of fields, w is a discrete valuation on L, 

and v is the restriction of w to F. Let e(w/v) = [w(Lx) : v(FX)]. We say that w/v 

is unramified if e(w/v) = 1 and the residue field extension is separable. We say that 

w/v is totally ramified if w is the unique extension of v to L and the residue field 

extension is purely inseparable. We say that w/v is tamely ramified if the residue field 

extension is separable and e(w/v) is not divisible by the residue characteristic. 

3. Preliminaries 

Theorem 3.1. Suppose n is an integer, n 2 2, Co is an integral domain of characteristic 

zero such that no rational prime which divides n is a unit in 0, CY E 0, a has finite 

multiplicative order, and (cx - 1)2 E n0. Then czR(*) = 1. 

Proof. See Corollary 3.3 of [17]. 0 

Lemma 3.2 (Silverberg and Zarhin [ 16, Lemma 5.21). Suppose that d and n are pos- 

itive integers, and for each prime e which divides n we have a matrix A( E M24Ze) 

such that the characteristic polynomials of the AL have integral coeficients indepen- 

dent of k’, and such that (Al - 1)2 E &&(&). Then for every eigenvalue a of At, 

(CX - l)/fi satisfies a manic polynomial with integer coejticients. 

Theorem 3.3 (Galois criterion for semistable reduction). Suppose X is an abelian ua- 

riety over a field F, v is a discrete valuation on F, and e is a prime not equal to the 

residue characteristic of v. Then the following are equivalent: 

(i) X has semistable reduction at v, 

(ii) 9 acts unipotently on T&Y); i.e., all the eigenvalues of PC(O) are 1, for every 

o E -0, 

(iii) for every o E Y, (p/(o) - 1)2 = 0. 

Proof. See Proposition 3.5 and Corollary 3.8 of [6] and Theorem 6 on p. 184 of [l]. 

0 

Lemma 3.4. Suppose e is a prime number and [ is a primitive Pth root of unity. 

Then 

([ - l)“V”) 

e 

is a unit in Z[c]. 

Proof. See, for example, the last two lines on p. 9 of [ 181. q 
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4. Lemmas 

Remark 4.1. Suppose w is a discrete valuation on a field L, L is a finite extension 

of a field F, u is the restriction of w to F, and w/u is totally and tamely ramified. 

Then the maximal unramified extension L,, of L is the compositum of L with the 

maximal unramified extension F,,, of F, Further, L,,/F,,, is a cyclic extension whose 

degree is [L: F] (see [5, Section 8, especially Corollary 3 on p. 311). Since passing to 

the maximal unramified extensions does not change the inertia groups, it follows that 

La,+, is a normal subgroup of 9, and $/Law is cyclic of order [L:F]. 

Lemma 4.2. Suppose v is a discrete valuation on a field F with residue characteristic 

p > 0, R is a positive integer, 8 is a prime, p does not divide R/, and L is a degree 

R extension of F which is totally ramified above v. Suppose that X is an abelian 

variety over F, and for every o E 9, all the eigenvalues of &a) are Rth roots of 

unity. Then X has semistable reduction at the extension of v to L. 

Proof. This was proved in Lemma 5.5 of [16] in the case where L is Galois over F. 

However, the same proof also works in general. This follows from the fact that in the 

proof we replaced F by its maximal umamified extension. For fields which have no 

non-trivial unramified extensions, every totally and tamely ramified extension is cyclic 

(and therefore Galois), and for each degree prime to the residue characteristic, there 

is a unique totally ramified extension of that degree. See Section 8 of [5], especially 

Corollary 3 on p. 3 1. 0 

The following result yields a converse of Theorem 5.1 of [ 171. 

Lemma 4.3. Suppose 8 is an integral domain of characteristic zero, and L is a prime 

number. Suppose k, r, and m are positive integers such that k 2 mq(er). Suppose 

c1 E 6 and ~8’ = 1. Then (CI - l)k E PZ[a]. 

Proof. Let s be the smallest positive integer such that a” = 1. Then 

(rx - l)k E (a - l)mq@)Z[a] c S”Z[a], 

by Lemma 3.4. 0 

Lemma 4.4. Suppose X is an abelian variety over a field F, v is a discrete valuation 

on F, n and m are integers, and n is not divisible by the residue characteristic of v. 

Suppose o E 3 If there exists a subgroup S of X, such that (a”’ - 1)s = 0 and 

(am - 1 )S’* = 0, then (am - 1 )*X, = 0. 

Proof. The map x H (y H e,(x, y)) induces a Gal(P/F)-equivariant isomorphism 

from X,/S onto Hom(S1”,pn). Since a = 1 on P,,, and am = 1 on Sin, it follows that 

am = 1 on X,/S. Therefore, (am - 1)*X, C(a” - 1)s = 0. 0 



A. Silverberg, Yu.G. Zarhinl Journal of Pure and Applied Algebra 132 (1998) 179-193 183 

Lemma 4.5. Suppose X is an abelian variety over a field F, v is a discrete valuation 
on F, n is an integer not divisible by the residue characteristic of v, and S = Xn? 
Then Y acts as the identity on SLn if and only tf (a - 1 )2X, = 0 for every o E J 

Proof. Applying Lemma 4.4 with m = 1, we obtain the forward implication. 

Conversely, suppose that (a - 1 )2X, = 0 for every 0 E 2 Writing 0” = ((o- 1 )+ 1 >“, 

it is easy to see that IS” = 1 on X,, for every r~ E 9. Since n is not divisible by the 

residue characteristic of v, X, and X,* are tamely ramified at v. Then the action of 9 

on X,, and on Xn* factors through the tame inertia group $19. Let r denote a lift to 

4 of a topological generator of the pro-cyclic group Y/f. Since 

e,((r - lYr,,(X,*)$) = 1, 

we have 

#((X,* Y )#((r - 1 KY) I #XC * 

The map from X, to (r - 1 Yr, defined by y H (z - 1)y defines a short exact sequence 

o~s-+x,-+(r-1)x,-+o. 

Therefore, 

#S#((r - 1 )x, ) = #X, = #S#&+ . 

Similarly, 

#((X,*)j)#((r - 1)X;> = #Xi. 

Therefore, 

#SI” = #((r - 1)X,) 5 #((r - 1)X;>. 

Since (z - 1 )x,* C Sin, we conclude that 

A+ = (r - 1)X;. 

From the natural Gal(FS/F)-equivariant isomorphism Xc E Hom(X,,p,) it follows 

that (r - 1)2X: = 0. Therefore, 4 acts as the identity on ,Sl.. q 

Lemma 4.6. Suppose X is an abelian variety over a field F, v is a discrete valuation 
on F, and n is an integer not divisible by the residue characteristic of v. If X has 
semistable reduction at v, then 

(i) (0 - 1 )2X, = 0 for every o E 9, 
(ii) 9 acts as the identity on (X,“)‘: 

(iii) ((T” - l)Xj, = 0 for every o E 9, in particular, X, is tamely ramified at v. 

Proof. By Theorem 3.3, we have (i). By Lemma 4.5, we have (ii). In the proof of 

Lemma 4.5, we showed that (i) implies (iii). 0 
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Lemma 4.7. Suppose X is an abelian variety over a field F, v is a discrete valuation 

on F of residue characteristic p 2 0, and 8 is a prime number not equal to p. If Xf 

is tamely ramijied at v, then Te(X) is tamely ramijied at v. 

Proof. If p = 0 then the wild inertia group $ is trivial and we are done. Suppose 

p > 0 and (T E f. Since p # /, p&P) is a finite p-group. Therefore, ps(a) has order 

a power of p. Since & is tamely ramified, pe(cr) - 1 E /End( T&Y)). It follows that 

pe(a) = 1 if / > 3, and p~(cr)~ = 1 if / = 2. Since p and / are relatively prime, 

/Q(c) = 1. q 

Lemma 4.8. Suppose X is an abelian variety over a field F, n = 2, 3, or 4, & is the 

prime divisor ofn, v is a discrete valuation on F whose residue characteristic is not e, 

t is a non-negative integer, L is an extension of F of degree R(n)‘+’ which is totally 

ramijed above v, and X has semistable reduction over L above v. Let z denote a ltft 

to 4 of a topological generator of the pro-cyclic group J/j. Let y = pc(z)R@jt, let 

1 = (y - 1)2/n, and let 

T = T,(X) + IITe(X) + A2T,(X) + . . . + AR@+’ r{(X). 

Then. 

(a) T is the smallest A-stable Z/-lattice in Ve(X) which contains Tt(X), 

(b) (yR@) - 1)2 = 0, 

(c) nR@-‘T C Te(X) C T, 

(d) (y - 1)2R(“) C nTe(X), 

(e) tf n = 2 or 3, then nT C T!(X) zf and only if (y - 1)4Te(X) c nTe(X), 

(f) if n = 2, then 4T 2 T,(X) if and only if (y - 1)6T2(X) C 2Tz(X), 

(g) if n = 4, then 2T C T,(X) if and only if (y - 1)2Tz(X) C 2T2(X). 

Proof. Let w denote the restriction of V to L. By Remark 4.1, Y/Xw is cyclic of order 

R(n) ‘+I. By Theorem 3. 3, we have (b). It follows that (A + Y)~(A + y - 1)2 = 0 if 

n = 2, ,?(A + y)2 = 0 if n = 3, and ,?(A + y) = 0 if n = 4. Therefore, I satisfies a 

polynomial over Z[y] of degree R(n), and we have (a) and (c). From the definition of 

T we easily deduce (e), (f), and (g). Further, (d) follows from (b). 0 

We will apply the following result only in Corollary 6.2(e). 

Theorem 4.9. Suppose LjF is a finite separable field extension, w is a discrete valu- 

ation on L, and v is the restriction of w to F. Suppose X is a d-dimensional abelian 

variety over F which has semistable reduction at w but not at v. Then [YU : 9+,,] has 

a prime divisor q such that q < 2d + 1. 

Proof. Let 8 be a prime not equal to the residue characteristic p, and let 

9U,~ = {C E sU : cr acts unipotently on Ve(X)}. 
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We have 9, C_ YU,, 5 XU by Theorem 3.3, since X has semistable reduction at w but 

not at v. Let F, be the completion of F at v and let F,“’ be the maximal unramified 

extension of F,. Then 9”~ is an open normal subgroup of YO, is independent of 8, 

and cuts out the smallest Galois extension F’ of F,“’ over which X has semistable 

reduction (see [6, pp. 354-3551). We have Gal(F’/Fr) % &/Y”,x. By a theorem of 

Raynaud (see [6, Proposition 4.7]), X has semistable reduction over F,“‘(X,), for every 

integer n not divisible by p and greater than 2. The intersection M of these fields 

therefore contains F’. As on the top of p. 498 of [13], every prime divisor of [M :F,n’] 

is at most 2d + 1 (see [14], Theorem 4.1 and Formula 3.1 for an explicit integer that 

[M : F:‘] divides). Thus, if q is a prime divisor of [XU : Yu,~] then q < 2d + 1. Since 

9, C Y”,x s YU, we obtain the desired result. 0 

Remark 4.10. With hypotheses and notation as in Theorem 4.9, let k, and k, denote 

the residue fields. Then [Y” : Y,] = e(w/v)[k, : kuli, where the subscript i denotes the 

inseparable degree (see [ 111, Proposition 21 on p. 32, for the case where L/F is Galois. 

In the non-Galois case, take a Galois extension L’ of F which contains L, and apply 

the result to L’/L and L’JF, to obtain the result for L/F). Taking completions, then 

[L, : FU] = e(w/v)[kW : k,] = [Y, : _PW][kW : k,],, where the subscript s denotes the 

separable degree. Therefore, the prime q from Theorem 4.9 divides [L, : F,]. 

5. Semistable reduction 

The results in this section extend the results of [ 151 to the cases n = 2,3,4. Theo- 

rem 5.2 is also a generalization of Corollary 7.1 of [16]. 

Remark 5.1. Suppose X is an abelian variety over a field F, v is a discrete valuation on 

F, and n is an integer greater than 1 which is not divisible by the residue characteristic 

of v. By Lemma 4.5, the following two statements are equivalent: 

(a) there exists a subgroup S of X, such that 9 acts as the identity on S and on 
SL, 

(b) (cr 2 1)*X, = 0 for every r~ E 4. 

Theorem 5.2. Suppose X is an abelian variety over a field F, v is a discrete valua- 

tion on F, and n is an integer greater than 1 which is not divisible by the residue 

characteristic of v. Suppose there exists a subgroup S of X, such that 9 acts as the 

identity on S and on S’-li. Then X has semistable reduction over every degree R(n) 

extension of F totally ramified above v. 

Proof. Suppose CJ E 9. By Lemma 4.5, (a- 1)*X, = 0. Let 9’ 2 3 be the inertia group 

for the prime below t? in a finite Galois extension of F over which X has semistable 

reduction. Then 6’ E 3’ for some r. Let t!’ be a prime divisor of n. Theorem 3.3 

implies that (pf(a) - l)* = 0. Let a be an eigenvalue of pe(o). Then (ar - 1)2 = 0. 
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Therefore, CI’ = 1. By our hypothesis, 

(&(a) - 1)’ E nMdZe)> 

where d = dim(X). By Theo&me 4.3 of [6], the characteristic polynomial of pe(a) 

has integer coefficients which are independent of d. By Lemma 3.2, (a - 1)2 E n& 

where z denotes the ring of algebraic integers. By Theorem 3.1 we have aR(‘) = 1. 

The result now follows from Lemma 4.2. 0 

Corollary 5.3 (Silverberg and Zarhin [15, Theorem 4.51). Suppose X is an abelian va- 
riety over a field F, v is a discrete valuation on F, n is an integer not divisible by the 
residue characteristic of v, and n 2 5. Then X has semistable reduction at v tf and 
only cf there exists a subgroup S of X,, such that 9 acts as the identity on S and on 
SI”. 

Proof. If X has semistable reduction at u, then by Theorem 3.3, (a - 1 )2X, = 0 for 

every (T E 9. Apply Lemma 4.5. 

For the converse, apply Theorem 5.2 with n 2 5. 0 

Remark 5.4. It follows immediately from Theorem 3.3 and Lemma 4.5 that if X has 

semistable reduction above v over a degree m extension of F totally ramified above v, 

then there exists a subgroup S of X,, such that 9 acts via a cyclic quotient of order 

m on S and on Sin. (If L is the extension of F, let w be the restriction of t7 to L 
and let S = X,“lV.) Theorem 5.5 below gives a different result in the direction converse 

to Theorem 5.2, and, further, gives conditions for semistable reduction which are both 

necessary and sufficient, thereby giving a generalization of Corollary 5.3 to the cases 

n = 2,3,4. Note that in the case n > 5, the equivalence of (i) and (ii) in Theorem 5.5 

is just a restatement of Corollary 5.3 (since R(n) = 1 if n 2 5). We remark that in that 

case, one can take (in the notation of Theorem 5.5) Y =X and cp the identity map. 

Theorem 5.5. Suppose n = 2, 3, or 4, respectively. Suppose X is an abelian variety 
over a field F, and v is a discrete valuation on F whose residue characteristic does 
not divide n. Suppose t is a non-negative integer and L is an extension of F of degree 
R(n)‘+’ which is totally ramified above v. Then the following are equivalent: 

(i) X has semistable reduction over L above v, 
(ii) there exist an abelian variety Y over a finite extension K of F unramifed 

above v, a separable K-isogeny rp :X + Y, and a subgroup S of Y,, such that 4 acts 
via a cyclic quotient of order R(n)* on S and on Sin. 
One can take cp so that its kernel is killed by 8, 9, or 4, respectively. If X has 
potentially good reduction at v, then one can take cp so that its kernel is killed by 
2, 3, or 2, respectively. 

Proof. Let 8 denote the prime divisor of n. 
Suppose K is a finite extension of F unramified above v, Y is an abelian variety 

over K, X and Y are K-isogenous, and S is a subgroup of Y,, such that 9 acts via 
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a cyclic quotient of order R(n)’ on S and on SIP. Suppose 0 E 9. By Lemma 4.4, 

(cP@) - 1)2Y, = 0, i.e., 

Let a be an eigenvalue of ~e,r(o). Since Y has potentially semistable reduction, CI is a 

root of unity. By Theorem 3.1, (a R(n)‘)R(n) = 1. Therefore, all eigenvalues of ~(,r(o) are 

R(n) ‘+I-th roots of unity. By Lemma 4.2, Y has semistable reduction over LK above 

v. Since X and Y are K-isogenous and K/F is unramified above v, X has semistable 

reduction over L above v. 

Conversely, suppose X has semistable reduction over L above v. By Lemma 4.6(iii), 

for every o E 9 we have (crnR@)‘+’ - l)& = 0. Since nR(n)‘+ is not divisible by the 

residue characteristic, X, is tamely ramified at v. Then the action of 4 on X, factors 

through y/f. Let r denote a lift to 9 of a topological generator of the pro-cyclic 

group y/f. Let T denote the Ze-lattice obtained from Lemma 4.8. By Lemma 4.7, T 
is stable under 9. Note that nR@-’ = 8, 9, or 4 when n = 2, 3, or 4, respectively. Let 

C = T/Te(X), and view C as a subgroup of Xs, X9, or X4, respectively. Let Y =X/C. 

Then the projection map X -+ Y is a separable isogeny defined over a finite separable 

extension K of F which is unramified over v, 

T/(Y) = T and (~e,(r)~(“) - 1)2Y,, = 0. 

Let K’ (respectively, L’) be the maximal unramified extension of K (respectively, L) 
in FS, let M be the degree R(n)’ extension of K’ in K’L’ cut out by rR@)‘, let w be 

the restriction of t? to M, and let S = Y,, fb*. Then rR@)’ is a lift to & of a topological 

generator of the pro-cyclic group &/2W, where jW is the first ramification group of 

&. By Lemma 4.5, @(“)’ acts as the identity on S and on Sin. Therefore, 9 acts on 

S and on Slfl via the cyclic group 9/& E Gal(M/K’). 

As in Lemma 4.8, let y = Glaxo’ and let 3, = (y - 1)2/n. If X has potentially good 

reduction at v, then y” @) = 1. Let p = I + y. Then p2 = p and T = T&X) + pT&X). 
Since~=(y2+1)/2ifn=2,~=(y2+y+1)/3ifn=3,and~=((y+1)/2ifn=4, 

it follows that C is a subgroup of X2, X3, or X2, respectively. 0 

Since the most interesting case of Theorem 5.5 is the case t = 0, we explicitly state 

that case. 

Corollary 5.6. Suppose n = 2, 3, or 4, respectively. Suppose X is an abelian variety 
over a field F, and v is a discrete valuation on F whose residue characteristic does 
not divide n. Suppose L is an extension of F of degree 4, 3, or 2, respectively, which 
is totally rami$ed above v. Then the following are equivalent: 

(i) X has semistable reduction over L above v, 
(ii) there exist an abelian variety Y over a finite extension K of F unramijed above 

v, a separable K-isogeny rp :X + Y, and a subgroup S of Y,, such that 9 acts 
as the identity on S and on Sin. 
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Further, cp can be taken so that its kernel is killed by 8, 9, or 4, respectively. If X 

has potentially good reduction at v, then cp can be taken so that its kernel is killed 

by 2, 3, or 2, respectively. 

6. Applications and refinements 

In the next result we show that the numbers in Theorem 5.5 and Corollary 5.6 

can be improved for abelian varieties of dimension 1, 2 (if n = 2 or 3), and 3 (if 

n = 2). In Section 7 we show that the numbers in Theorem 6.1 are sharp. See also 

[7], which deals with other problems concerned with finding a “good” abelian variety 

in an isogeny class, with an answer depending on the dimension. 

Theorem 6.1. In Theorem 5.5 and Corollary 5.6, with d = dim(X), cp can be taken 

so that its kernel is killed by 4 if d = 3 and n = 2, by 3 tf d = 2 and n = 3, and by 

2 tf d = n = 2. If d = 1, then we can take Y =X and cp the identity map. 

Proof. We use the notation from Lemma 4.8 and from the proof of Theorem 5.5. 

Suppose n = 2 or 3. By Lemma 4.8(d), y acts unipotently on the Fe-vector space 

& % l/LT/(X)/Tt(X). Therefore, (y - l)‘“& = 0. By Lemma 4.8(e), if d = 2 then C 

is killed by n. By Lemma 4.8(f), if n = 2 and d = 3, then C is killed by 4. If d = 1, 

then A is an endomorphism of T&Q, so T = T/(X) and Y = X. 

Suppose d = 1 and n = 4. Since r E 9, we have y E SLz(Z2). Therefore, the 

eigenvalues of y are either both 1 or both - 1. Therefore, either (y - 1)2 = 0 or 

(y + 1)’ = 0. In both cases, (y - 1 )2X4 = 0. Therefore, 1 is an endomorphism of r,(X) 

andY=X. 0 

We can therefore take Y = X in Theorem 5.5 and Corollary 5.6 when X is an 

elliptic curve. This is not the case in general for abelian varieties of higher dimension, 

as shown by the examples in the next section. However, in Corollary 6.4 below we 

will show that a result of this sort does hold for abelian varieties with purely additive 

potentially good reduction. 

Next, we will give criteria for an elliptic curve to acquire semistable reduction over 

extensions of degree 2, 3, 4, or 6. 

Corollary 6.2. Suppose X is an elliptic curve over a field F, and v is a discrete 

valuation on F of residue characteristic p > 0. 

(a) If p # 2, then X has semistable reduction above v over a totally ramified 

quartic extension of F if and only tf X has an $-invariant point of order 2. 

(b) If p # 3, then X has semistable reduction above v over a totally ramiJied cubic 

extension of F tf and only tfX has an $-invariant point of order 3. 

(c) If p # 2, then X has semistable reduction above v over a quadratic extension 

of F tf and only tf either X has an 9-invariant point of order 4, or all the points of 

order 2 on X are y-invariant. 
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(d) If p # 2 and X has bad but potentially good reduction at v, then X has good 

reduction above v over a quadratic extension of F tf and only tfX has no 9-invariant 

point of order 4 and all its points of order 2 are .-@-invariant. 

(e) Suppose p is not 2 or 3. Then the following are equivalent: 

(i) X has no x-invariant points of order 2 or 3, 

(ii) there does not exist a finite separable extension L of F of degree less than 

6 such that X has semistable reduction at the restriction of 17 to L. 

(f) Suppose p is not 2 or 3. Then the following are equivalent: 

(i) X has no Y-invariant points of order 4 or 3 and not all the points of 

order 2 are j-invariant, 

(ii) there does not exist a finite separable extension L of F of degree less than 

4 such that X has semistable reduction at the restriction of 5 to L. 

Proof. Theorem 6.1 implies that, for n = 2, 3, or 4, if L is an extension of F of 

degree R(n) which is totally ramified above v, then X has semistable reduction over 

L above v if and only if there exists a subgroup 6 of X, such that 9 acts as the 

identity on 6 and on 6 In. Parts (a), (b), and (c) are a reformulation of this. 

For (d), note that by Theorem 7.4 of [16], if X has an Y-invariant point of order 4 

then X has good reduction at v. 

In case (e), if X has an Y-invariant point of order 2 (respectively, 3) then X has 

semistable reduction above v over a totally ramified extension of degree 4 (respec- 

tively, 3) by part (a) (respectively, (b)). Conversely, suppose L/F is a finite separa- 

ble extension of degree less than 6, and suppose X has semistable reduction at the 

restriction w of fi to L. If X has semistable reduction at v, then we are done by 

Corollary 5.3 with n = 6. Otherwise, taking completions we have [L, : Fv] = 2, 3, 

or 4 by Remark 4.10. There exists an intermediate unramified extension M/F” such 

that L,/A4 is totally ramified. By parts (a), (b), and (c) applied to A4 in place of F, 

then X has an Y-invariant point of order 2 or 3. Case (f) proceeds the same way as 

case (e). 0 

Remark 6.3. Note that if the elliptic curve X has additive reduction at v, but has 

multiplicative reduction over an extension L of F which is totally and tamely ramified 

above v, then X has multiplicative reduction over a quadratic extension of F, but not 

over any non-trivial totally and tamely ramified extension of F of odd degree (since 

(x + 1)2 is the only possibility for the characteristic polynomial of p{(r), where r is 

as before). Therefore in case (b) of Corollary 6.2, either X already has semistable 

reduction at v, or else X has good (i.e., does not have multiplicative) reduction above 

v over a cubic extension of F. In case (e), X has good reduction over an extension of 

degree 6 (see [12, p. 3121). 

Corollary 6.4. Suppose X is an abelian variety over a field F, v is a discrete valuation 

on F of residue characteristic p 2 0, and X has purely additive and potentially good 

reduction at v. 
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(a) If p # 2, then X has good reduction above v over a quadratic extension of F 
tf and only tf there exists a subgroup S of X4 such that 9 acts as the identity on S 
and on Sl’. 

(b) If p # 3, then X has good reduction above v over a totally ramiJied cubic 
extension of F tf and only tf there exists a subgroup S of X3 such that 3 acts as 
the identity on S and on SIX. 

(c) Suppose p # 2, and L/F is a degree 4 extension, totally ramijied above v, 
which has a quadratic subextension over which X has purely additive reduction. Then 
X has good reduction above v over L if and only if there exists a subgroup S of X2 
such that 9 acts as the identity on S and on S12. 

Proof. The backwards implications follow immediately from Corollary 5.6. 

Let n = 4, 3, and 2 and L = 2, 3, and 2, in cases (a), (b), and (c), respectively. 

Let r be a lift to 3 of a topological generator of the pro-cyclic group j/$, and let 

y = pe(z). If X acquires good reduction over a totally ramified degree R(n) extension, 

then $@) = 1, by Remark 4.1. Since X has purely additive reduction at v, 1 is not 

an eigenvalue of y (see [9]). In case (c), -1 is not an eigenvalue of y, since X has 

purely additive reduction over a ramified quadratic extension. It follows that in cases 

(a), (b), and (c), respectively, we have 

y+l=O, y2+y+l=0 and $+1=0 

in End(Vl(X)). We deduce that (y - l)2Te(X) 5 nTe(X), i.e., (r - l)2X, = 0. The 

result now follows from Lemma 4.5. 0 

7. Examples 

We will show that the numbers in Corollary 5.6 and Theorem 6.1 are sharp. 

First, we will show that Corollary 5.6 is sharp in the case of potentially good 

reduction. This will show that we cannot take Y = X in general. In the next 3 examples, 

we have n = 2, 3, or 4, respectively. Let e denote the prime divisor of n. Suppose 

that F is a field with a discrete valuation v of residue characteristic not equal to X 

Suppose E and E’ are elliptic curves over F, E has good reduction at v, and E’ has 

additive reduction at v but acquires good reduction over an extension L of F of degree 

R(n). Let Y = E x E! As shown in the proof of Theorem 5.5, the action of $ on 

Y,, factors through $19. Let r be a lift to x of a topological generator of the pro- 

cyclic group y/j, and let g = p!,(r). Note that #(“) = 1. Let G denote the cyclic 

group generated by g. In each example we will construct a certain ZJG]-module T 
such that T c Te(Y)c(l/L)T. Let C’ = (l/k’)T/Tf(Y), view C’ as a subgroup of Yt, 

and let X = Y/C! Then Tt(X) %! T. Viewing Te(Y)/T as a subgroup C of Xl, we 

have Y = X/C. In our three examples, C is stable under 9, (r - l)2X, # 0, and 

(r - 1 )2 Y, = 0. By Remark 5.1, there is a subgroup S C Y, such that 4 acts as the 
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identity on S and on Sin, but there does not exist a subgroup 6 CX, such that 9 acts 

as the identity on 6 and on 6 In. We see that X and Y satisfy (ii) of Corollary 5.6. 

Example 7.1. Let n = 2. Suppose that E’ does not acquire good reduction over a 

quadratic subextension of L/F. As Zz[G]-modules, we have 

T2(Y) g (Z2blAn. - w2 @ Z2[4/(x2 + 11, 

where g acts via multiplication by x. Let 

T = Z2[x]/(x - 1) @ Z2[xI/(x - 1)(x2 + l), 

and view T as a submodule of Tz( Y) via the natural injection. For example, one could 

take F = Q, v = 3, and E and E’, respectively, the elliptic curves llA3 and 36Al 

from the tables in [2]. 

Example 7.2. Let n = 3. As Zs[G]-modules, we have 

T3(Y> = (Z~[X]/(X - 1>)2 @ Z3[x]/(x2 +x + l), 

where g acts via multiplication by x. Let 

T = Z3[x]/(x - 1) @ Z3[xl/(x3 - 1 ), 

and view T as a submodule of T3(Y) via the natural injection. For example, one could 

take F = Q, v = 2, and E and E’, respectively, the elliptic curves llA3 and 2OA2 

from the tables in [2]. 

Example 7.3. Let n = 4. As Zz[G]-modules, we have 

T2(Y) = (Z2[xl/(x - 1 )I2 @ (Z2bl/(x + 1 H2 ” (Z2[GH2, 

where g acts via multiplication by x. Let 

T = Z~[X]/(X - 1) @ Z2[x]/(x2 - 1) @? Z2[xI/(x + l), 

and view T as a submodule of Tz(Y) via the natural injection. One could take F = Q, 
v = 3, and E and E’, respectively, the elliptic curves 1 lA3 and 99Dl from the tables 

in [2]. 

Next, we will show that the numbers 8, 9 and 4 (respectively) in Corollary 5.6 are 

sharp. 

Example 7.4. Let n = 2, 3, or 4. For ease of notation, let R = R(n). Let e be the 

prime divisor of n. Let F be a field with a discrete valuation v of residue characteristic 

not equal to e, and suppose E is an elliptic curve over F with multiplicative reduction 

at v. Suppose that A4 is a degree R Galois extension of F which is totally ramified 

above v. Let x be the composition 

Gal(P/F) + Gal(M/F) 2 Z/RZ L-) AutF(ER), 
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where the image of the last map is generated by a cyclic permutation of the factors of 

ER, and ER is the R-fold product of E with itself. Let A denote the twist of ER by x. Let 

r denote a lift to 9 of a generator of y/f. As QJr]-modules, Ve(A) ” Qe[z]/(zR- l)*. 

Let f be the inverse image of Z,[z]/(zR - l)* in V,(A). Then for some integer k, we 

have T/(A) c ekf. View ekf/Tt(A) as a finite subgroup of A and let X be the quotient 

of A by this subgroup. Then X is defined over an extension K of F unramified above 

v, and X acquires semistable reduction over KM above v. We have F = T&C), and 

the minimal polynomial of r on & is (,xR - I)* = (x - 1)2R (mod 8). Therefore, 

(r-1)6X2#Oifn=2, (r-1)4Xs#Oifn=3, and (r-1)2X2#Oifn=4. 

From Lemma 4.8 (with t = 0, F = K, and L = KM) we obtain a lattice T such that 

8T C T*(X) C T if n = 2, 

9TcTs(X)CT ifn=3, 

and 

4T C T,(X) & T if n = 4. 

Let C = T/T&C), view C as a subgroup of Xl, and let Y = X/C. As we saw in 

the proof of Theorem 5.5, (r - 1)2Y, = 0, and C is killed by 8, 9, or 4 if n = 2, 

3, or 4 respectively. By Lemma 4.8(et(g), the group C is not killed by 4, 3, or 2, 

respectively. 

Suppose K’ is a finite extension of K unramified above v, Y’ is an abelian va- 

riety over K’, cp : X + Y’ is a separable K’-isogeny, and (r - 1)2Y,’ = 0. Sup- 

pose that the kernel of cp is killed by some positive integer s. Then we can suppose 

sTe(Y’) & T/(X) C Te(Y’). Let A = (r2 - 1)/n. Since Te(Y’) is a R-stable Ze-lattice 

in V/(X) which contains T&C), we have T C T((Y’) by Lemma 4.8a. Therefore, 

ST C T&f). Then C is killed by s, and therefore s cannot be 4, 3, or 2, respec- 

tively. This shows that the numbers 8, 9, and 4 are sharp in Corollary 5.6. Note that 

dim(X) = 4, 3, or 2, respectively. By Theorem 6.1, these are the smallest dimensions 

for which such examples exist. 

Example 7.5. Let F be a field with a discrete valuation v of residue characteristic not 

equal to 2, and suppose E is an elliptic curve over F with multiplicative reduction at 

v. Suppose that M is a degree 4 Galois extension of F which is totally ramified above 

v. Let x be the composition 

Gal(F’/F) t Gal(M/F) % Z/42 -+ AutF(E4), 

where the image of the last map is generated by a cyclic permutation of the factors of 

E4. Let 

B = {(el,~,~,e4) E E4 : el + e2 + e3 + e4 = 0) S E3, 

and let A be the twist of B by x. Let r denote a lift to 4 of a generator of ~JJ@, 

and let f(x) = (x3 +x2 +x + 1)2. As Qz[r]-modules, &(A) 2 Qz[r]/f(r). Let ?” 
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be the inverse image of Z,[z]/f(z) in V&4). As in the previous example, we obtain 

an abelian variety X such that f = Tz(X), and such that the minimal polynomial of 

r on X2 is f(x) = (x - 1)6 (mod 2). Therefore, (r - 1)4X2 # 0. As above, we see 

that X is isogenous over an unramified extension to an abelian variety Y such that 

(r - 1)2Y2 = 0 and such that the kernel of the isogeny is killed by 4. Using Lemma 

4.8e, we see that there does not exist such a Y where the kernel is killed by 2. This 

shows that the result in Theorem 6.1 for d = 3 and n = 2 is sharp. The sharpness of 

the other numbers in Theorem 6.1 follows from Examples 7.2 and 7.1. 
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